Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38592966

RESUMO

FLOWERING LOCUS T (FT), belonging to the FT/TFL1 gene family, is an important gene regulating the flowering transition and inflorescence architecture during plant development. Given its importance to plant adaptation and crop improvement, FT has been extensively studied in related plant research; however, the specific role and underlying molecular mechanisms of FT in the continuous flowering of perennial plants remains elusive. Here, we isolated and characterized homologous FT genes from two Camellia species with different flowering-period phenotypes: CaFT was isolated from Camellia azalea, a precious species blooming in summer and flowering throughout the year, and CjFT was isolated from C. japonica, which blooms in winter and spring. The major difference in the genes between the two species was an additional five-amino acid repeat sequence in C. japonica. FT showed high expression levels in the leaves in both species from January to August, especially in April for C. japonica and in May for C. azalea. CaFT was expressed throughout the year in C. azalea, whereas CjFT was not expressed from September to December in C. japonica. The expression levels of FT in the floral buds were generally higher than those in the leaves. Overexpression of CaFT and CjFT in Arabidopsis indicated that both genes can activate downstream genes to promote flowering. Transgenic callus tissue was obtained by introducing the two genes into C. azalea through Agrobacterium-mediated transformation. Transcriptome and quantitative real-time polymerase chain reaction analyses indicated that both florigen FT genes promoted the expression of downstream genes such as AP1, FUL, and SEP3, and slightly up-regulated the expression of upstream genes such as CO and GI. The above results indicated that CaFT and CjFT played a role in promoting flowering in both camellia species. The expression pattern of CaFT in leaves suggested that, compared to CjFT, CaFT may be related to the annual flowering of C. azalea.

3.
BMC Biol ; 22(1): 50, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414012

RESUMO

BACKGROUND: The formation and domestication of ornamental traits are influenced by various aspects, such as the recognition of esthetic values and cultural traditions. Camellia japonica is widely appreciated and domesticated around the world mainly due to its rich variations in ornamental traits. Ornamental camellias have a diverse range of resources, including different bud variations from Camellia spp. as well as inter- and intra- specific hybridization. Despite research on the formation of ornamental traits, a basic understanding of their genetics and genomics is still lacking. RESULTS: Here, we report the chromosomal-level reference genome of C. japonica through combining multiple DNA-sequencing technologies and obtain a high-density genetic linkage map of 4255 markers by sequencing 98 interspecific F1 hybrids between C. japonica and C. chekiangoleosa. We identify two whole-genome duplication events in C. japonica: one is a shared ancient γ event, and the other is revealed to be specific to genus Camellia. Based on the micro-collinearity analysis, we find large-scale segmental duplication of chromosome 8, resulting to two copies of the AGAMOUS loci, which may play a key role in the domestication of floral shapes. To explore the regulatory mechanisms of seasonal flowering, we have analyzed year-round gene expression patterns of C. japonica and C. azalea-a sister plant of continuous flowering that has been widely used for cross breeding. Through comparative analyses of gene co-expression networks and annual gene expression patterns, we show that annual expression rhythms of some important regulators of seasonal growth and development, including GIGANTEA and CONSTANS of the photoperiod pathway, have been disrupted in C. azalea. Furthermore, we reveal that the distinctive expression patterns of FLOWERING LOCUS T can be correlated with the seasonal activities of flowering and flushing. We demonstrate that the regulatory module involved in GIGANTEA, CONSTANS, and FLOWERING LOCUS T is central to achieve seasonality. CONCLUSIONS: Through the genomic and comparative genomics characterizations of ornamental Camellia spp., we propose that duplication of chromosomal segments as well as the establishment of gene expression patterns has played a key role in the formation of ornamental traits (e.g., flower shape, flowering time). This work provides a valuable genomic platform for understanding the molecular basis of ornamental traits.


Assuntos
Camellia , Estações do Ano , Camellia/genética , Melhoramento Vegetal , Genômica , Flores/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338945

RESUMO

In trees, the annual cycling of active and dormant states in buds is closely regulated by environmental factors, which are of primary significance to their productivity and survival. It has been found that the parallel or convergent evolution of molecular pathways that respond to day length or temperature can lead to the establishment of conserved periodic gene expression patterns. In recent years, it has been shown in many woody plants that change in annual rhythmic patterns of gene expression may underpin the adaptive evolution in forest trees. In this review, we summarize the progress on the molecular mechanisms of seasonal regulation on the processes of shoot growth, bud dormancy, and bud break in response to day length and temperature factors. We focus on seasonal expression patterns of genes involved in dormancy and their associated epigenetic modifications; the seasonal changes in the extent of modifications, such as DNA methylation, histone acetylation, and histone methylation, at dormancy-associated loci have been revealed for their actions on gene regulation. In addition, we provide an outlook on the direction of research on the annual cycle of tree growth under climate change.


Assuntos
Histonas , Árvores , Árvores/fisiologia , Estações do Ano , Histonas/genética , Metilação de DNA , Expressão Gênica , Regulação da Expressão Gênica de Plantas
5.
Ann Bot ; 132(5): 1007-1020, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37831901

RESUMO

BACKGROUND AND AIMS: The functional specialization of microRNA and its target genes is often an important factor in the establishment of spatiotemporal patterns of gene expression that are essential to plant development and growth. In different plant lineages, understanding the functional conservation and divergence of microRNAs remains to be explored. METHODS: To identify small regulatory RNAs underlying floral patterning, we performed a tissue-specific profiling of small RNAs in various floral organs from single and double flower varieties (flowers characterized by multiple layers of petals) in Camellia japonica. We identified cja-miR5179, which belongs to a deeply conserved microRNA family that is conserved between angiosperms and basal plants but frequently lost in eudicots. We characterized the molecular function of cja-miR5179 and its target - a B-function MADS-box gene - through gene expression analysis and transient expression assays. KEY RESULTS: We showed that cja-miR5179 is exclusively expressed in ovule tissues at the early stage of floral development. We found that cja-miR5179 targets the coding sequences of a DEFICIENS-like B-class gene (CjDEF) mRNA, which is located in the K motif of the MADS-box domain; and the target sites of miR5179/MADS-box were consistent in Camellia and orchids. Furthermore, through a petal transient-expression assay, we showed that the BASIC PENTACYSTEINE proteins bind to the GA-rich motifs in the cja-miR5179 promoter region and suppresses its expression. CONCLUSIONS: We propose that the regulation between miR5179 and a B-class MADS-box gene in C. japonica has a deep evolutionary origin before the separation of monocots and dicots. During floral development of C. japonica, cja-miR5179 is specifically expressed in the ovule, which may be required for the inhibition of CjDEF function. This work highlights the evolutionary conservation as well as functional divergence of small RNAs in floral development.


Assuntos
Camellia , MicroRNAs , MicroRNAs/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Camellia/genética , Camellia/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Evolução Molecular , Flores/fisiologia , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Plant Mol Biol ; 111(3): 249-262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36371768

RESUMO

Flower color is a trait that affects the ornamental value of a plant. Camellia sasanqua is a horticultural plant with rich flower color, but little is known about the regulatory mechanism of color diversity in this plant. Here, the anthocyanin profile of 20 C. sasanqua cultivars revealed and quantified 11 anthocyanin derivatives (five delphinidin-based and six cyanidin-based anthocyanins) for the first time. Cyanidin-3-O-(6-O-(E)-p-coumaroyl)-glucoside was the main contributor to flower base color, and the accumulation of cyanidin and delphinidin derivatives differed in the petals. To further explore the molecular mechanism of color divergence, a transcriptome analysis was performed using C. sasanqua cultivars 'YingYueYe', 'WanXia', 'XueYueHua', and'XiaoMeiGui'. The co-expression network related to differences in delphinidin and cyanidin derivatives accumulation was identified. Eleven candidate genes encoding key enzymes (e.g., F3H, F3'H, and ANS) were involved in anthocyanin biosynthesis. Moreover, 27 transcription factors were screened as regulators of the two types of accumulating anthocyanins. The association was suggested by correlation analysis between the expression levels of the candidate genes and the different camellia cultivars. We concluded that cyanidin and delphinidin derivatives are the major drivers of color diversity in C. sasanqua. This finding provides valuable resources for the study of flower color in C. sasanqua and lays a foundation for genetic modification of anthocyanin biosynthesis.


Assuntos
Camellia , Camellia/genética , Camellia/metabolismo , Antocianinas , Perfilação da Expressão Gênica , Flores/genética , Pigmentação/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas
8.
Biomolecules ; 12(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291685

RESUMO

Camellia is the largest genus in the family Theaceae. Due to phenotypic diversity, frequent hybridization, and polyploidization, an understanding of the phylogenetic relationships between Camellia species remains challenging. Comparative chloroplast (cp) genomics provides an informative resource for phylogenetic analyses of Camellia. In this study, 12 chloroplast genome sequences from nine Camellia species were determined using Illumina sequencing technology via de novo assembly. The cp genome sizes ranged from 156,545 to 157,021 bp and were organized into quadripartite regions with the typical angiosperm cp genomes. Each genome harbored 87 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes in the same order and orientation. Differences in long and short sequence repeats, SNPs, and InDels were detected across the 12 cp genomes. Combining with the complete cp sequences of seven other species in the genus Camellia, a total of nine intergenic sequence divergent hotspots and 14 protein-coding genes with high sequence polymorphism were identified. These hotspots, especially the InDel (~400 bp) located in atpH-atpI region, had sufficient potential to be used as barcode markers for further phylogenetic analysis and species identification. Principal component and phylogenetic analysis suggested that regional constraints, rather than functional constraints, strongly affected the sequence evolution of the cp genomes in this study. These cp genomes could facilitate the development of new molecular markers, accurate species identification, and investigations of the phylogenomic relationships of the genus Camellia.


Assuntos
Camellia , Genoma de Cloroplastos , Genoma de Cloroplastos/genética , Filogenia , Camellia/genética , Genômica , DNA Intergênico
9.
BMC Plant Biol ; 22(1): 474, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199021

RESUMO

BACKGROUND: The cultivated Camellia sasanqua forms a divergent double flower pattern, and the stamen petaloid is a vital factor in the phenomenon. However, the regulation mechanism remains largely unclear. RESULTS: Here, a comprehensive comparative transcriptome analysis of the wild-type, "semi-double", "peony double", and "rose double" was performed. The cluster analysis of global gene expression level showed petal and stamen difficulty separable in double flower. The crucial pathway and genes related to double flower patterns regulation were identified by pairwise comparisons and weighted gene coexpression network (WGCNA). Divergent genes expression, such as AUX1 and AHP, are involved in plant hormone signaling and photosynthesis, and secondary metabolites play an important role. Notably, the diversity of a petal-specific model exhibits a similar molecular signature to the stamen, containing extensin protein and PSBO1, supporting the stamen petaloid point. Moreover, the expansion of class A gene activity influenced the double flower formation, showing that the key function of gene expression was probably demolished. CONCLUSIONS: Overall, this work confirmed the ABCE model and provided new insights for elucidating the molecular signature of double formation.


Assuntos
Camellia , Transcriptoma , Camellia/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo
10.
Curr Issues Mol Biol ; 44(9): 4059-4069, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36135190

RESUMO

The developmental regulation of flower organs involves the spatio-temporal regulation of floral homeotic genes. BASIC PENTACYSTEINE genes are plant-specific transcription factors that is involved in many aspects of plant development through gene transcriptional regulation. Although studies have shown that the BPC genes are involved in the developmental regulation of flower organs, little is known about their role in the formation of double-flower due. Here we characterized a Class I BPC gene (CjBPC1) from an ornamental flower-Camellia japonica. We showed that CjBPC1 is highly expressed in the central whorls of flowers in both single and doubled varieties. Overexpression of CjBPC1 in Arabidopsis thaliana caused severe defects in siliques and seeds. We found that genes involved in ovule and seed development, including SEEDSTICK, LEAFY COTYLEDON2, ABSCISIC ACID INSENSITIVE 3 and FUSCA3, were significantly down-regulated in transgenic lines. We showed that the histone 3 lysine 27 methylation levels of these downstream genes were enhanced in the transgenic plants, indicating conserved roles of CjBPC1 in recruiting the Polycomb Repression Complex for gene suppression.

11.
Hortic Res ; 9: uhac093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912071

RESUMO

The APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors (TFs) are involved in the regulation of specialized terpenoid biosynthesis. However, the AP2/ERF TFs in Litsea cubeba have not been characterized and their role in the biosynthesis of terpenoids is unknown. Here, 174 LcAP2/ERF TFs were identified in L. cubeba and categorized into four subfamilies: 27 AP2, 7 RAV, 1 Soloist, and 139 ERF. Transcriptomic and qRT-PCR assays both showed that the expression levels of LcERF19 were similar to that of terpene synthase LcTPS42 in the pericarp, which is related to the synthesis of geranial and neral in L. cubeba. LcERF19 was further shown to encode a nuclear-localized protein and its expression was strongly induced by jasmonate. Yeast one-hybrid and dual-luciferase assays showed that LcERF19 associated with GCC box elements of the LcTPS42 promoter and promoted its activity. Transient overexpression of LcERF19 in L. cubeba and overexpression of LcERF19 in tomato resulted in a significant increase in geranial and neral. Our findings show that LcERF19 enhances geranial and neral biosynthesis through activation of LcTPS42 expression, which provides a strategy to improve the flavor of tomato and other fruits.

12.
Curr Genomics ; 23(1): 66-76, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35814935

RESUMO

Background: Flower senescence is the last stage of flower development and affects the ornamental and economic value of flower plants. There is still less known on flower senescence of the ornamental plant Camellia lutchuensis, a precious species of Camellia with significant commercial application value. Methods: Transcriptome sequencing was used to investigate the flower senescence in five developmental stages of C. lutchuensis. Results: By Illumina HiSeq sequencing, we generated approximately 101.16 Gb clean data and 46649 differentially expressed unigenes. Based on the different expression pattern, differentially expressed unigenes were classified into 10 Sub Class. And Sub Class 9 including 8252 unigenes, was highly expressed in the flower senescent stage, suggesting it had a potential regulatory relationship of flower senescence. First, we found that ethylene biosynthesis genes ACSs, ACOs, receptor ETR genes and signaling genes EINs, ERFs all upregulated during flower senescence, suggesting ethylene might play a key role in the flower senescence of C. lutchuensis. Furthermore, reactive oxygen species (ROS) production related genes peroxidase (POD), lipase (LIP), polyphenoloxidase (PPO), and ROS scavenging related genes glutathione S-transferase (GST), glutathione reductase (GR) and superoxide dismutase (SOD) were induced in senescent stage, suggesting ROS might be involved in the flower senescence. Besides, the expression of monoterpenoid and isoflavonoid biosynthesis genes, transcription factors (WRKY, NAC, MYB and C2H2 ), senescence-associated gene SAG20 also were increased during flower senescence. Conclusion: In C. lutchuensis, ethylene pathway might be the key to regulate flower senescence, and ROS signal might play a role in the flower senescence.

13.
Curr Genomics ; 23(1): 26-40, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35814940

RESUMO

Background: Seed abortion is a common phenomenon in Chinese jujube that seriously hinders the process of cross-breeding. However, the molecular mechanisms of seed abortion remain unclear in jujube. Methods: Here, we performed transcriptome sequencing using eight flower and fruit tissues at different developmental stages in Ziziphus jujuba Mill. 'Zhongqiusucui' to identify key genes related to seed abortion. Histological analysis revealed a critical developmental process of embryo abortion after fertilization. Results: Comparisons of gene expression revealed a total of 14,012 differentially expressed genes. Functional enrichment analyses of differentially expressed genes between various sample types uncovered several important biological processes, such as embryo development, cellular metabolism, and stress response, that were potentially involved in the regulation of seed abortion. Furthermore, gene co-expression network analysis revealed a suite of potential key genes related to ovule and seed development. We focused on three types of candidate genes, agamous subfamily genes, plant ATP-binding cassette subfamily G transporters, and metacaspase enzymes, and showed that the expression profiles of some members were associated with embryo abortion. Conclusion: This work generates a comprehensive gene expression data source for unraveling the molecular mechanisms of seed abortion and aids future cross-breeding efforts in jujube.

14.
Front Plant Sci ; 13: 811791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283896

RESUMO

Understanding the molecular mechanism of the cold response is critical to improve horticultural plant cold tolerance. Here, we documented the physiological, transcriptome, proteome, and hormonal dynamics to cold stress in temperate genotype (Tg) and subtropical genotype (Sg) populations of Camellia japonica. Tg C. japonica suffered minimal osmotic and oxidative damage compared to Sg C. japonica under the same cold treatment. Transcriptional and translational differences increased under the cold treatment, indicating that Tg C. japonica was affected by the environment and displayed both conserved and divergent mechanisms. About 60% of the genes responding to cold had similar dynamics in the two populations, but 1,896 transcripts and 455 proteins differentially accumulated in response to the cold between Tg and Sg C. japonica. Co-expression analysis showed that the ribosomal protein and genes related to photosynthesis were upregulated in Tg C. japonica, and tryptophan, phenylpropanoid, and flavonoid metabolism were regulated differently between the two populations under cold stress. The divergence of these genes reflected a difference in cold responsiveness. In addition, the decrease in the abscisic acid (ABA)/gibberellic acid (GA) ratio regulated by biosynthetic signal transduction pathway enhanced cold resistance in Tg C. japonica, suggesting that hormones may regulate the difference in cold responsiveness. These results provide a new understanding of the molecular mechanism of cold stress and will improve cold tolerance in horticultural plants.

15.
Genome Biol ; 23(1): 14, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012630

RESUMO

BACKGROUND: As a perennial crop, oil-Camellia possesses a long domestication history and produces high-quality seed oil that is beneficial to human health. Camellia oleifera Abel. is a sister species to the tea plant, which is extensively cultivated for edible oil production. However, the molecular mechanism of the domestication of oil-Camellia is still limited due to the lack of sufficient genomic information. RESULTS: To elucidate the genetic and genomic basis of evolution and domestication, here we report a chromosome-scale reference genome of wild oil-Camellia (2.95 Gb), together with transcriptome sequencing data of 221 cultivars. The oil-Camellia genome, assembled by an integrative approach of multiple sequencing technologies, consists of a large proportion of repetitive elements (76.1%) and high heterozygosity (2.52%). We construct a genetic map of high-density corrected markers by sequencing the controlled-pollination hybrids. Genome-wide association studies reveal a subset of artificially selected genes that are involved in the oil biosynthesis and phytohormone pathways. Particularly, we identify the elite alleles of genes encoding sugar-dependent triacylglycerol lipase 1, ß-ketoacyl-acyl carrier protein synthase III, and stearoyl-acyl carrier protein desaturases; these alleles play important roles in enhancing the yield and quality of seed oil during oil-Camellia domestication. CONCLUSIONS: We generate a chromosome-scale reference genome for oil-Camellia plants and demonstrate that the artificial selection of elite alleles of genes involved in oil biosynthesis contributes to oil-Camellia domestication.


Assuntos
Camellia , Camellia/genética , Camellia/metabolismo , Domesticação , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Humanos , Metagenômica , Óleos de Plantas/metabolismo
16.
Front Plant Sci ; 13: 1100302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726671

RESUMO

Magnoliids are the largest flowering plant clades outside of the eudicots and monocots, which are distributed worldwide and have high economic, ornamental and ecological values. Eudicots, monocots and magnoliids are the three major clades of Mesangiospermae, and their phylogenetic relationship is one of the most interesting issues. In recent years, with the continuous accumulation of genomic information, the evolutionary status of magnoliids has become a hot spot in plant phylogenetic research. Although great efforts have been made to study the evolution of magnoliids using molecular data from several representative species such as nuclear genome, plastid genome, mitochondrial genome, and transcriptome, the results of current studies on the phylogenetic status of magnoliids are inconsistent. Here, we systematically describe the current understanding of the molecular research on magnoliid phylogeny and review the differences in the evolutionary state of magnoliids. Understanding the research approaches and limitations of magnoliid phylogeny can guide research strategies to further improve the study of the phylogenetic evolution of magnoliids.

17.
Biomolecules ; 13(1)2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36671426

RESUMO

Camellia nitidissima is a woody plant with high ornamental value, and its golden-yellow flowers are rich in a variety of bioactive substances, especially flavonoids, that are beneficial to human health. Chalcone isomerases (CHIs) are key enzymes in the flavonoid biosynthesis pathway; however, there is a scarcity of information regarding the CHI family genes of C. nitidissima. In this study, seven CHI genes of C. nitidissima were identified and divided into three subfamilies by phylogenetic analysis. The results of multiple sequence alignment revealed that, unlike CnCHI1/5/6/7, CnCHI2/3/4 are bona fide CHIs that contain all the active site and critical catalytic residues. Analysis of the expression patterns of CnCHIs and the total flavonoid content of the flowers at different developmental stages revealed that CnCHI4 might play an essential role in the flavonoid biosynthesis pathway of C. nitidissima. CnCHI4 overexpression significantly increased flavonoid production in Nicotiana tabacum and C. nitidissima. The results of the dual-luciferase reporter assay and yeast one-hybrid system revealed that CnMYB7 was the key transcription factor that governed the transcription of CnCHI4. The study provides a comprehensive understanding of the CHI family genes of C. nitidissima and performed a preliminary analysis of their functions and regulatory mechanisms.


Assuntos
Camellia , Flavonoides , Liases Intramoleculares , Humanos , Camellia/genética , Camellia/química , Camellia/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Filogenia
18.
Tree Physiol ; 42(2): 411-424, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34378055

RESUMO

Outbreaks of pine wood nematode (PWN; Bursaphelenchus xylophilus) represent a severe biotic epidemic for the Pinus massoniana in China. When invaded by the PWN, the resistant P. massoniana might secret abundant oleoresin terpenoid to form certain defensive fronts for survival. However, the regulatory mechanisms of this process remain unclear. Here, the geranyl diphosphate synthase (PmGPPS1) gene was identified from resistant P. massoniana. Tissue-specific expression patterns of PmGPPS1 at transcript and protein level in resistant P. massoniana were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry. Functional characteristics analysis of PmGPPS1 was performed on transgenic Nicotiana benthamiana by overexpression, as genetic transformation of P. massoniana is, so far, not possible. In summary, we identified and functionally characterized PmGPPS1 from the resistant P. massoniana following PWN inoculation. Tissue-specific expression patterns and localization of PmGPPS1 indicated that it may play a positive role involved in the metabolic and defensive processes of oleoresin terpenes production in response to PWN attack. Furthermore, overexpression of PmGPPS1 may enhance the production of monoterpene, among which limonene reduced the survival of PWN in vitro. In addition, PmGPPS1 upregulated the expression level of key genes involved in mevalonic acid (MVA) pathway, the methylerythritol phosphate (MEP) pathway and gibberellins (GAs) biosynthesis to boost the growth and development of tobacco through a feedback regulation mechanism. Our results offered new insights into the pivotal role of the PmGPPS1 involved in terpene-based defense mechanisms responding to the PWN invasion in resistant P. massoniana and provided a new metabolic engineering scenario to improve monoterpene production in tobacco.


Assuntos
Diterpenos , Nematoides , Pinus , Animais , Difosfatos , Diterpenos/metabolismo , Monoterpenos/metabolismo , Pinus/genética , Pinus/metabolismo , Doenças das Plantas/genética
19.
Mitochondrial DNA B Resour ; 6(12): 3511-3512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869895

RESUMO

Camellia fluviatilis is an important shrub producing edible seed oil, which is widely cultivated in South China. In this study, the complete chloroplast genome was sequenced and analyzed based on the Illumina HiSeq platform. The results showed that the complete chloroplast genome is 157,041 bp with 37.29% GC content, including a large single copy (LSC) region of 86,718 bp, a small single copy (SSC) region of 18,293 bp, and a pair of inverted repeats (IRs) regions of 26,015 bp. There are 128 genes in the chloroplast genome of C. fluviatilis, including 83 protein-coding genes, 8 ribosomal RNAs, and 37 transfer RNAs. Phylogenetic analysis revealed that C. fluviatilis is closely related to C. lanceoleosa, indicating that both belong to the Sect. Paracamellia Sealy.

20.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884627

RESUMO

Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.


Assuntos
Vias Biossintéticas , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...